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Introduction
‘Data Assimilative Optimization of WSA Source Surface and
Interface Radii using Particle Filtering’, GDM,
S. Jones, K. Hickmann, C.N. Arge, H. Godinez-Vasquez, C. Henney
Space Weather 18 (2020) 5

↑ As published

Collaboration between NASA
Goddard Spaceflight Center,
the Air Force Research
Laboratory, and LANL, funded by
NASA Heliophysics Space
Weather Operations-to-Research
(HSWO2R) grant
NNH17ZDA0001N
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Zooming into our solar system

Solar wind and the heliosphere (Credit: NASA/IBEX)
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Our star matters

We live near a G-type main-sequence star

Two central reasons to study the Sun:
1. We live here!

the Sun is a dynamic object,
sustaining and destroying life on/near Earth,
including technological civilization

2. We can understand stellar phenomena generally
better by close, high-resolution, multiple-perspective
studies of our particular star

Stellar winds/magnetic fields important to many astro domains:
e.g., star formation and limits on growth
– our own star may hold answers
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Our star matters

What questions pertain?

• Satellites & telescopes monitor the Sun,
which rotates every ∼27 days (at equator),

• Models exist to predict solar winds,
some days in advances,
→ magnetohydrodynamic (MHD) models, and
→ phenomenological models

MHD models ∝ a priori physics, computationally costly,
Phenomenological models approx. & derive simplified principles,
(talking about these today)

Goal: to take input observations (telescope/satellite data),
=⇒ predict/forecast solar environment in near-future

Astro analytic methods (MC/Bayes) help us do better
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Staring into the Sun

Solar flare in UV, 2020-05-29 (Credit: NASA/GEOS-16)
we do not predict flares but can study how the wind moves 7 / 45



Lessons for deep-space astronomers

Avoid assumptions
In gravitational-wave astrophysics,
had assumed Gaussian noise models,
‘simple’ source-to-detector propogation,
& familiar systematics

In contrast,
heliophysics has complex source-to-detector propogation,
leaving less time to understand noise,
→ especially combining heterogeneous data streams
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The shape of the solar wind

Complex propgation: wind flows out at ∼400 km/s, rotating ∼27 days
Schatten Current Sheet (SCS) + Potential Field Source Surface (PFSS)
(Credit: Wilcox, Hoeksema, & Scherrer, Science 209, p. 603, 1980.) 9 / 45



The shape of the solar wind

All our vantage points
move through that complicated surface:
• Limited perspectives
• Particles move� slower than light
• but light doesn’t contain all info to determine forecast

=⇒ However, we can observe over time
+ assimilate information into more complete model
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Space weather models

Definition
Data assimilation:
combining observation with
theory to yield (better) prediction

• Wang-Sheeley-Arge (WSA):
a practical Fortran model
for space-weather prediction
(phenomenological,
widely-used)

• Space data science:
particle filter/Monte Carlo
– solar wind & polarity

WIND satellite at Lagrange Point L1
(Credit: NASA Goddard SFC) 11 / 45



Space weather: WSA as a simplified model

Solar magnetic field lines in Wang-Sheeley-Arge (WSA) model:
central image: magnetogram generated by another model, ADAPT
red/blue = polarity. Kinked lines ∼ unphysical→ must tune WSA

2 model parameters: optimize w/ sat. data for adaptive ↑ prediction

Rss = source surface radius ≈ 2.6 R◦

Ri = interface radius ≈ 2.3 R◦
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Space weather: WSA as a simplified model

In other words
Hold all the other complicated physics fixed
only adjust the parameters that determine
where B-field straightens out

if they fit data better, move model that way
→ Monte Carlo sampling, not deep physics
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Space weather: predicting the changing sun

Solar wind (above),
magnetic field
polarity (below):

WSA 2019
example prediction
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Space weather: changing cycles as input
Space weather environment fluctuates
Prediction possible with models ∼WSA
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Input to WSA – 12 realizations of ADAPT global solar magnetograms
(1992 to 2003) based on KPVT (Kitt Peak Vacuum Telescope) images 15 / 45



Space weather informed by inference

Wrap Python around operational NASA Fortran code

Reframe problem:

Solar magnetic field – a 2-D parameter space (shifting over time)
What determines shape? Goodness-of-fit H to satellite data1,

H =
avg correct polarity

avg solar wind velocity residual

Likelihood & probability – inaccessible:
instrumental noise distribution unknown

Performance metric H is calculable

1that is, compare WSA model predictions to satellite data (e.g., WIND)
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Space weather: implications for wind
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Space weather: data assimilation

→ How many H samples to tune (Rss,Ri) optimally?

. . . WSA (Rss,Ri) may vary – fast or slow
=⇒ metric behavior uncertain

Data assimilation
take samples evaluated on time window 0
→ apply (re-)samples to next time window 1

requires slowly-evolving data =⇒ sample density grows at peak

Optimization process assures model performance with
continual measurement, which iteratively tunes model
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Of performance metrics and particles
=⇒ ideal for particle filter (sequential Monte Carlo)
(like ensemble Kalman filter, applicable to terrestrial prediction)

(upper left) iteration 0: samples, (upper right): calculate total & resample
(lower left): perturbation kernel, (lower right) iteration 1: evaluate 19 / 45



Of performance metrics and particles

Caution
shares similarities with inference/parameter estimation
but should not be naïvely interpreted as such
→ problem is lack of noise model,

so unsafe to interpret credible intervals
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Space weather (simulation)

Simulation
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Space weather (simulation)

Remember, interface radius Ri < source surface radius Rss
resulting in a triangular boundary to the parameter space
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Space weather (simulation): metric, window 0
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‘Twin’ experiment at (Rss,Ri) = (2.6,2.3), 512 samples, 7 days, metric H23 / 45



Space weather (simulation): metric, window 1
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‘Twin’ experiment at (Rss,Ri) = (2.6,2.3), 512 samples, 7 days, metric H24 / 45



Space weather (simulation): metric, window 2
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‘Twin’ experiment at (Rss,Ri) = (2.6,2.3), 512 samples, 7 days, metric H25 / 45



Space weather (simulation)

Degeneracy/correlation along band in Rss

• initially unexpected, made sense to our solar physicists
• Ri affects physics more, so model more sensitive to it

Those plots used imshow to interpolate values
try plotting with corner to use weighted samples (gray dots)
and their contours

analogous ∼ likelihood samples (again, not strictly true)
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Space weather (simulation): filter, window 0
Source radius (Rsol) = 3.12+0.52
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particle filter (true value marked by red crosshairs) 27 / 45



Space weather (simulation): filter, window 1
Source radius (Rsol) = 3.00+0.59
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Space weather (simulation): filter, window 2
Source radius (Rsol) = 2.92+0.60
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Space weather (simulation)

Convergence!

promising for particle filter

cautionary note:
triangular space induces biases in 1D marginalizations,
–math noted in paper, expectation value usually 6= mode

30 / 45



Space weather (real data)

Real data
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Space weather (real data): filter, window 0
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Carrington Rotation 1901/1902 real data (ADAPT map 5/WIND)
particle filter, 512 samples, 7-day windows (3-day advance predictions)
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Space weather (real data): filter, window 1
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Space weather (real data): filter, window 2
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particle filter, 512 samples, 7-day windows (3-day advance predictions)
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Space weather (real data): filter, window 3
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Space weather (real data): filter, window 4
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Space weather (real data): filter, window 5
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Space weather (real data)

Encouraging
To converge and possibly ‘track’
a changing (?) value of (Rss,Ri) over time
by assimilating satellite data

=⇒ ability to adaptively forecast
a solar environment that
is known to be changing continually
(e.g., 11-year solar cycle)
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Analysis: comparison (solar wind)

Solar wind radial velocity vs time for 2 weeks wrt WIND satellite data
comparing standard (Rss,Ri) = (2.51,2.49) to filter optimum (3.9,3.4)
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Analysis: comparison (performance metric)

Metric H (higher = better) vs time for 2 weeks wrt WIND satellite data
comparing standard (Rss,Ri) = (2.51,2.49) to filter optimum (3.9,3.4)
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Solar magnetic fields: a validity check

Improving the metric was the direct goal
success was not guaranteed,. . .
(particle filter might not converge or show any gains)

. . . but can we show any other physical significance?

Yes: another improvement happens,
even without direct access to ‘knob-tuning’
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Solar magnetic fields with better model results

Solar magnetic field lines traced at standard values (TOP) and
at possible particle-filter optimum, (Rss,Ri) = (3.50,2.51) (BOTTOM):
smoothness =⇒ greater physical self-consistency (+ accuracy) 42 / 45



Summary of NASA Space Weather optimization

• (given base of NASA code, encapsulate in Python),
• Optimization: satellite observations,

combined with particle filtering,
can tune corona→ solar wind models,
& optimize parameters
=⇒ ↑ sensitivity

• Widely-used WSA space weather model
now adapts & evolves in time,
→ operationalization being studied by NOAA
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Summary & Conclusion

Thank you for your attention – shabbat shalom tomorrow!

• SPACE WEATHER forecasting helps us
predict our nearest star

• THE SUN stimulates many questions,
despite its proximity

• ASTROPHYSICS methods improve solar physics,
and solar physics can inform astrophysics
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